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ABSTRACT 
 

In this paper the dispersion phenomena of a 1D solid is analysed using the Fractional 
Continuum Mechanics (FCM) approach. The results are compared with the reference dispersion 
curve of Born-Von Karman (BK) lattice.  The fundamental result is that for the length scale in the 
FCM model comparable with the lattice spacing in BK model the dispersive curve for both 
formulations is equivalent, whereas the order of fractional continua plays the role of scaling 
parameter. 

1. Introduction 

It is well know that structured solids present dispersive behaviour which cannot be captured 
by the classical local continuum mechanics approaches. A canonical problem in which this can be 
seen is the wave propagation in the Born-Von Karman (BK) lattice [1]. The problem of covering 
BK solution based on well-known non-local formulations has been reported in [2].  

In this paper the dispersive effects in a 1D structured solid is analysed using the FCM 
approach previously proposed by Sumelka [3, 4]. The results obtained within this approach have 
been compared with the reference dispersion curve of BK lattice. It is observed the fractional model 
can capture the size effects in the dynamic behaviour in a similar way as BK discrete system. 

2. Problem formulation 

Born-Von Karman lattice 

As a reference discrete model, we will consider the Born-Von Karman lattice, a one-
dimensional infinite chain of monoatomic particles at sites with linear interactions between nearest 
neighbours. The equation of motion for particle j is 
 

 
 

which leads to the dispersion relation 

 
where 

 
and M is the mass of each particle, u is the displacement, C is the stiffness of the interaction, k is the 
wavenumber, ω is an angular frequency, a is the lattice spacing and c0 denotes  



  

Fractional Continuum Model 

For the case of FCM the dynamic equilibrium for 1D case is [4] 

 

where E is the Young’s modulus, l f is the length scale, X is a spatial variable, D denotes the 
fractional differentiation, α is the order of fractional continua, ρ0 is reference density and t denotes 
time. 

For the FCM model the dispersion curve has been obtained based on the numerical solution 
of vibration of 1D fractional body, and applying the Fast Fourier Transform on the obtained signal 
to capture the fundamental frequency – point in a k vs. ω curve (cf. Fig. 1). 

3. Numerical examples and discussion 

In Fig. 1 the dispersion curves for FCM, CCM and Born-Von Karman models in the right 
half of the first Brillouin zone are presented. The curves were obtained under the assumption that 
length scale in FCM model is equal to the lattice spacing in a discrete BK chain. It should be 
noticed that the order of fractional continua α plays the role of scaling parameter.  

 

 
 

Fig. 1 Dispersion curves for FCM, CCM and Born-Von Karman models  
in the in the right half of the first Brillouin zone. 
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