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1. Introduction
The paper addresses the long-standing difficulty in constitutive algorithms in rate-independent

crystal plasticity, related to the non-uniqueness in selection of active slip systems in the Hill-Rice
framework [1]. Applicability of earlier algorithms for multi-surface plasticity [2, and the references
therein] is limited due to the lack of positive definiteness and symmetry of the slip-systems interaction
matrix. Iterative procedures were proposed e.g. in [3] and [4] but the question remained open how to
proceed if there are non-unique solutions associated with distinct active slip system sets.

The present constitutive algorithm [5] determines the active slip-system set and incremental
slips by constrained minimization of the incremental work formulated as a quadratic function of non-
negative crystallographic slips.

2. Incremental work minimization algorithm for a finite time step
The main concept of the algorithm for a fully kinematic control is to perform minimization of a

small increment ∆w of the deformation work density along a given straining path,

(1) ∆w(∆F,∆γα)→ min
∆γα≥0

for given ∆F, α ∈ P ,

for a known finite time step [tn, tn+1] starting from a selected set P of potentially active slip-systems.
The final set of active slip-systems A = {α | ∆γα > 0} ⊆ P is obtained at the minimum point of
∆w. The search strategy for the active slip-systems set A is thus embedded in the incremental work
minimization. When the algorithm is extended to a partially kinematic control then minimization is
performed also with respect to a free complementary part of deformation gradient increment ∆F. The
increment of deformation work density ∆w(∆F,∆γα) in minimization problem (1) reads

(2) ∆w = Sn ·∆F +
1

2
∆F · Ce ·∆F−

∑
α

(fαn + Λα ·∆F) ∆γα +
1

2

∑
α,β

∆γαgαβ ∆γβ .

It is obtained using time integration of the constitutive rate equations for the Piola stress S and yield
function fα for α-th slip-system. An implicit time integration algorithm is constructed where the non-
incremental quantities: the elastic stiffness pseudomoduli tensor Ce for work-conjugate pair (S,F),
the slip-systems interaction matrix (gαβ) under full kinematic control, and the α-th yield-surface
normal Λα = in F-space, are updated at the end of time step.

The augmented Lagrangian method has been used to convert the constrained minimization prob-
lem (1) to smooth unconstrained one. The minimization algorithm has been implemented in Wolfram
Mathematica environment, where the Newton method with line-search step control is employed in
the FindMinimum function.

3. Results
Large plastic deformation of crystals causes lattice rotations and in turn multiple changes of

active slip-systems set A. It can result in strong irregularities in stress components as shown in Fig.
1(a). The algorithm enables related successive transitions between yield-surface corners, Fig. 1(b).
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Figure 1. Uniform simple shear calculated up to shear magnitude λ = 0.79. (a) Components of Kirchhoff’s
stress τ and number |A| of active slip-systems, and (b) the transition between yield surface corners in the stress
space.

Simulation of rolling of a copper polycrystal up to 92% reduction is presented to illustrate
the efficiency and robustness of the algorithm, Fig. 2. Large deformation of the polycrystal has been
modeled as plane strain compression by the classical Taylor scheme for 432 randomly oriented grains.
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Figure 4. Angular distance between total d and plastic dp strain-rate for step size (a) ∆λ = 10−2 and (b)
∆λ = 10−4.

5.3. Simulation of polycrystal deformation

The results of numerical simulation of large deformation of a polycrystal are presented to illustrate
the efficiency and robustness of the algorithm given in Section 4 and based on incremental energy
minimization. In the calculations whose results are shown in Fig. 5 the algorithm worked on 2500
time-steps at the level of a single crystal for each of over four hundred different orientations.
Many numerical tests of polycrystal behaviour in deformation processes other than plane-strain
compression (a substitute of rolling) were performed, the results shown in Fig. 5 are only exemplary.
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Figure 5. Rolling textures for copper polycrystal consisting of 432 grains deformed to 92% thickness
reduction, (a) 〈100〉, (b) 〈110〉 and (c) 〈111〉 pole figures.

The results shown here are for a copper polycrystal rolled to 92% reduction, modelled as plane-
strain compression Fcompr = e−λ with step size ∆λ = 10−3. Material parameters used are the same
as above in the simple shear test of a single crystal. The classical Taylor scheme has been used for
432 randomly oriented grains in a polycrystal. The results are qualitatively not new, but illustrate that
numerical difficulties related to the non-uniqueness problem have been overcome for a large number
of distinct crystal deformation paths by applying the incremental work minimization algorithm.

6. PARTIAL KINEMATIC CONTROL

6.1. Incremental energy minimization

Numerical simulations can be carried out at a material point level under the assumption that only a
part F̂(λ) of the total deformation gradient F is kinematically controled for given λ(t). That kind of
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Figure 2. (a) 〈100〉, (b) 〈110〉 and (c) 〈111〉 pole figures of copper polycrystal rolling textures simulated by
using the incremental work minimization algorithm.
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