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1. Introduction 

Green’s functions are foundations of several numerical methods, especially the boundary 

element method [1,3]. However, the construction of such functions is difficult for modern 

composite materials. In the paper the magneto-electro-elastic (MEE) composite materials are 

considered. They exhibit the coupling effects of mechanical and electromagnetic fields, namely the 

piezoelectric, piezomagnetic and magnetoelectric phenomena.  

The anisotropy of the MEE materials and the coupling effects do not allow to obtain 3D 

Green’s functions in the closed form. The semi-analytical solution is given by line integral form 

[1,3]. The integral can be evaluated by the standard Gaussian integration method, hence the 

challenge is to calculate the derivatives of the Green functions with high accuracy. In [3] the finite-

difference (FD) scheme is adopted to calculate the derivatives of Green’s functions; after several 

numerical tests the authors established the appropriate value of the step size, however the value of 

the optimal step-size is problem-dependent. Therefore, in the present work the complex variable 

step method (CVSM) [2,4] is applied to calculate numerically the derivatives of 3D Green’s 

functions for the MEE materials. The CVSM requires no difference operations as in the FD 

schemes; thus, the round-off errors are significantly reduced and the method is practically 

independent on the step size as shown in [2]. These properties make the CVSM an easy-to-

implement and highly accurate computational method for the numerical calculation of first-order 

derivatives of the real functions. The presented method is characterized by the extremely high 

accuracy; hence, it could be treated as a tool for validating the well-known FD methods, especially 

for the proper choice of the step size. The mentioned feature is important for the case of the MEE 

composite models, for which, in general, analytical solutions are not known.  

2. Constitutive equations of magneto-electro-elasticity 

The linear constitutive equations for the MEE composite can be expressed as [1,2,3]: 
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where σij and εij are the elastic stress and strain tensors, respectively; Di and Ei denote the electric 

displacement and electric field vectors; Bi and Hi are the magnetic induction and magnetic field 

vectors; cijkl, κij, and μij are the elastic stiffness, the dielectric, and magnetic permittivity tensors. The 

electric and magnetic fields are coupled with the elastic fields of stresses and strains by the 

piezoelectric eijk and piezomagnetic qijk moduli tensors. The electric and magnetic fields are coupled 

by the magnetoelectric moduli tensor aij. To simplify the notation of the equations of multi-fields, 

the generalized quantities can be introduced as in [2]. The equilibrium equations consist of the 

mechanical equilibrium equation, the Gauss’ law, and the Maxwell equation for the quasi-static 

magnetic field as shown in [2,3]. To associate the mechanical strains and the displacement field, the 

linearized relation of anisotropic elasticity theory is used [1].  



3. Integral expression of Green’s function 

The generalized displacement vector UJK expresses the Green function by the following line 

integral [1]: 
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where r is the distance between the source and the field point and JK is the generalized Christoffel 

tensor [1]. The appropriate parameterization of the unit circle |n*|=1 allows to calculate the integral 

(2) as a single integral [3]. Because the integral (2) is calculated numerically, the derivative 

computations is performed by the CVSM, which is also the numerical method. 

4. Complex variable step method 

Let us consider the Taylor series of the real-valued function, e.g. the Green function, around 

the point x: 
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and let the step size h be replaced by the complex step ih, where 1i   . Taking the imaginary 

parts of both sides of the Taylor series with the complex step, the derivative of the function F is 

represented by the following equation [2,4]: 
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In comparison with the FD schemes, the round-off error is significantly reduced due to the lack of 

subtraction in Eq. (4), and the truncation error can further be reduced by applying the step size in 

order of the machine accuracy [4]. 

5. Numerical examples 

In the full paper the numerical examples will show the robustness and the accuracy of the 

CVSM for calculations of Green’s functions derivatives. Also, the comparison with the FD scheme 

results will be given to validate the choice of the step-size and the accuracy of the FD methods. 
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