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1. Introduction 

Considered problem refers to a wide class of contact and mixed value problems of elasticity 
theory. There are many problems considered early for various domains reinforced by a elastic 
stringers or thin inclusions, as well by a stringers of variable stiffness, for which were obtained as 
an exact, as well an approximate solutions. Particularly in [1] an effective solution of a contact 
problem for piecewise-homogeneous orthotropic plane with finite inclusion of variable stiffness 
changing by linear law was obtained. 

In present work a analogue of problem [1] for piecewise-homogeneous isotropic plate 
assuming that stringer stiffness varies according to power law is considered. Solution of a problem 
is reduced to solution of a Prandtl’s singular integrodifferential equation with generalized Cauchy 
kernel. Depending on the exponents of stiffness variety law the weight functions describing the 
behavior of a solution in the vicinity of a stringer ends are found. Further, equation is solved by the 
method of mechanical quadratures, which developed in [2] for singular integral equations with 
generalized Cauchy kernel and in [3] for Prandtl’s singular integral. 

 

2. Statement of problem and governing equation 

A piecewise-homogeneous isotropic plate consist from two dissimilar semi-infinite plates is 
considered. One from semi-infinite plates is stiffened by thin stringer of length l , which is 
perpendicular to and terminating at bimaterial interface, as well have a width varying by power law 

( ) ( )0( ) 1 , 0qph x h x x p q= − ≥ . It is supposed that stringer fastened with plate, don’t resist to 
bukling and stretched or compressed as the rod being in a state of uniaxial stress.  

Equating stringers axial deformation under an applied external load thereto 0 ( )q x  and 
unknown contact stresses ( )xτ  with the plate deformations in the contact area from the same 
contact stress ( )xτ  obtain governing equation of stated problem. In dimensionless values it written 
as: 
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B  and C  are constants depending at Poisson ratios of semi-infinite plate materials and ratio of their 
shear modulus, 0 0,E ν  are elasticity modulus and Poisson ratio of a stringer material, 1μ  is a shear 
modulus of semi-infinite plate where stringer is located.  



3. Behavior of a solution in the neighbourhood of a stringer ends 
The investigation of a equation behavior near the ends of interval of integration is shown that 

behavior of solution near the the ends is strong depend from exponents p  and q .   
When  

1) 0 1p≤ <  and 0 1q≤ <   we have   ( )( ) ( ) ( )( ) ( )
1 1 1* *2 2( ) 1 1 1 1q p− −α − − −αϕ ζ = ϕ −ζ + ζ +ψ −ζ + ζζ ζ   

0 1< α <    is a root of cos 0B Cπα+ −α = , otherwise 0α =  

2) 0 1p≤ <  and 1q =            -          ( )( ) ( ) ( )( ) ( )1* *( ) 1 1 1 1 p−γ −α δ − −αϕ ζ = ϕ −ζ + ζ +ψ −ζ + ζζ ζ  
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3) 0 1p≤ <  and 1q >            -         ( )( ) ( ) ( )( ) ( )1 1 1* *( ) 1 1 1 1q q p− −α − − −αϕ ζ = ϕ −ζ + ζ +ψ −ζ + ζζ ζ  

4) 1p =  and 0 1q≤ <            -          ( )( ) ( ) ( )( ) ( )
1 1

* *2 2( ) 1 1 1 1q− −η − θϕ ζ = ϕ − ζ + ζ +ψ −ζ + ζζ ζ   

0 1< η <    is a root of   02ctg
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0 1< θ <    is a root of   02ctg
sin sin 1
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5) 1p =  and 1q =               -            ( )( ) ( ) ( )( ) ( )* *( ) 1 1 1 1−γ −η δ θϕ ζ = ϕ −ζ + ζ +ψ −ζ + ζζ ζ   

6) 1p =  and 1q >               -            ( )( ) ( ) ( )( ) ( )1 1* *( ) 1 1 1 1q q− −η − θϕ ζ = ϕ −ζ + ζ +ψ −ζ + ζζ ζ  

7) 1p >  and 0 1q≤ <          -            ( )( ) ( ) ( )( ) ( )
1 11 1* *2 2( ) 1 1 1 1p q p− − − −ϕ ζ = ϕ − ζ + ζ +ψ −ζ + ζζ ζ  

8) 1p >  and 1q =               -             ( )( ) ( ) ( )( ) ( )1 1* *( ) 1 1 1 1p p−γ − δ −ϕ ζ = ϕ −ζ + ζ +ψ −ζ + ζζ ζ  

9) 1p >  and 1q >               -            ( )( ) ( )1 1*( ) 1 1q p− −ϕ ζ = ϕ −ζ + ζζ   

The new unknown functions ( )*ϕ ζ  and ( )*ψ ζ , which are smooth functions bounded on 

closed interval [ ]1,1− , will be found by the method of mechanical quadratures.  
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