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1. Introduction
A consistent algorithmic treatment of the incremental Mori–Tanaka model for elasto-plastic

two-phase composites is developed. The computational scheme can be classified as a doubly-nested
iteration-subiteration scheme. At each level, the corresponding system of nonlinear equations is
solved using the Newton method. Exact linearization is performed at each level so that quadratic
convergence of the nested iterative scheme is achieved. The model provides reliable results which are
comparable to those known from the literature. The efficiency of the numerical code has been tested
for large-scale finite-element problems. The convergence behaviour has been found similar to that of
the simple Huber-von Mises plasticity model.

2. Implementation of the incremental Mori–Tanaka scheme
The Mori–Tanaka model [1] is a mean-field model originally dedicated to the estimation of the

effective properties of linearly elastic two-phase composites. It belongs to the family of models based
on the Eshelby’s solution to the problem of an ellipsoidal inclusion embedded into an infinite linearly
elastic matrix [2]. By applying linearization of the constitutive law of each phase, as proposed by
Hill [3], the original MT model can be adapted to elasto-plastic deformation of composites. Nowa-
days, this theory is well established. However, its efficient practical utilization in large-scale bound-
ary value problems seems to be still problematic. The pioneering work in this field is by Doghri and
Ouaar [4] but still their algorithm do not lead to a consistent global tangent matrix.

The proposed numerical implementation provides comprehensive treatment of the MT scheme.
This has not been done so far to the author’s best knowledge and is the main purpose of our work.
As stated in the introduction, our scheme consists of three nested iterative schemes. The lowest
level is constituted by independent sets of incremental constitutive equations of each phase. They
are solved using the return mapping algorithm and provide an update of internal variables for a given
(yet unknown) increment of the strain in the individual phase. Additionally, the first and the second
derivative of internal variables with respect to independent variables (strain in phases) is computed.
Those derivatives are crucial for obtaining a consistent global tangent matrix. At the intermediate
level, the interaction equation [3], appropriately formulated for the incremental scheme, is solved. It
delivers proper redistribution of strains and stresses among the phases according to the Mori–Tanaka
model for the given overall strain in the composite. At the outer level, the global equilibrium equations
are solved. Exact linearization is performed at each level of the nested scheme. As a result, the global
tangent matrix is an exact linearization of the governing equations, and quadratic convergence of the
Newton method can be achieved.

3. Finite-element example
Finite-element implementation and computations have been performed with the use of the Ace-

Gen/AceFEM system [5]. In particular, the exact algorithmic (consistent) tangent has been obtained
by applying the automatic differentiation (AD) technique available in the AceGen system. As a result,
large-scale simulations can be efficiently performed with use of the proposed implementation.
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Figure 1. Uniaxial tension test of the slab with a hole: (a) equivalent plastic strain in the matrix and
(b) pulling force as a function of normalized elongation. Solid line corresponds to constant load incre-
ment ∆L/L = 0.0005 (50 steps), while dots indicate the results obtained with maximal possible increment of
load (10 steps).

As an example, consider a thin plate with a hole made of a metal matrix composite. The content
of spherical ceramic inclusions, uniformly dispersed in the aluminum alloy matrix, amounts to 20% of
volume fraction. The plate is stretched in the longitudal direction. The inclusions are assumed elastic,
and the matrix is elasto-plastic, governed by J2-plasticity with isotropic hardening. Distribution of
the equivalent plastic strain in the matrix is shown in Fig. 1(a). The finite-element mesh comprises
368 640 trilinear hexahedral elements which corresponds to approximately 1.2 ·106 DOF. The pulling
force as a function of normalized elongation is shown in Fig. 1(b). The figure presents results of two
analyses: the solid line corresponds to a small, constant load increment, while the dots refer to the
solution proceeding with possibly large load increments. The convergence behaviour is similar to that
of the simple J2-plasticity model, which shows that the proposed numerical implementation of the
micromechanical model can serve as an extremely efficient tool for solving large-scale FE problems
dedicated to elasto-plastic composite materials.
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